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Abstract

In this paper, the free vibration of conical panels is analyzed by the mesh-free kp-Ritz method. Both 1-D and 2-D

versions of the kp-Ritz approach are formulated for conical panels. For conical panels with two simply supported straight

edges, the 1-D kp-Ritz version is used, where the kernel particle estimation is employed in hybridized form with harmonic

functions to approximate the 2-D displacement field. For conical panels having arbitrary boundary conditions, the

displacement field is approximated by the 2-D kp-Ritz version, with 2-D form of kernel particle functions employed. The

classical thin shell theory based on Love’s hypothesis is employed in the present analyses, and based on the kernel particle

concept and Ritz technique, the eigenequations of the frequencies of the conical panels are obtained. To validate the

accuracy of stability of the present method, convergence studies were carried out based on the influences of the support size

and the number of nodes. Comparisons were also made with existing results available in the open literature. This study

also examines in detail the effects of variation in the semi-vertex angle and boundary conditions, on the frequency

characteristics of conical panels.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Conical shell panels are important structural components in engineering applications, such as in the
aerospace and marine engineering disciplines. Therefore, the frequency characteristics of conical shell panels
must be studied for safety and stability reasons. A very early work, Rossettos and Parisse [1], studied the
dynamic responses of cylindrical and conical panels. Teichmann [2] provided an approximation of the lowest
eigenfrequencies and buckling loads of cylindrical and conical shell panels under initial stresses. Srinivasan
and Krishnan [3] solved the natural frequencies and modes of clamped isotropic conical panels using Donnell’s
shell theory and an integral equation technique. A spline finite strip method was developed by Cheung et al. [4]
to study the free vibration of a singly curved shell panel. Lim and Liew [5] developed a global Ritz formulation
based on the energy principle to study the free vibration of shallow conical shell panels. A set of orthogonally
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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generated and kinematically oriented pb-2 shape functions were used to approximate the displacement field.
Based on the same method, the effects of initial twist and thickness variation on the vibration behaviour of
shallow conical shells were investigated by Liew et al. [6]. Lim and Liew [7] also examined the vibration of
shallow conical shells with shear flexibility. The derivation of thickness shear is assumed as a linear
approximation, and the Lamé parameter for the transverse shear strain component was considered. Bardell et
al. [8] performed the vibration analysis of thin, isotropic conical panels using the h–p finite element method in
conjunction with Love’s thin shell hypothesis. More recently, Liew and Feng [9] investigated the vibration
characteristics of conical shell panels with 3-D flexibility, and Lam et al. [10] discussed the effects of boundary
conditions on the free vibration characteristics of truncated conical panels using the generalized differential
quadrature method.

The Ritz method is a numerical approach widely adopted in computational mechanics due to its simplicity,
stability and efficiency in numerical implementation. It is a generalization of the Rayleigh [11] method, which
is based on the principle that a resonant vibrating system completely interchanges its energy from a potential
state to a kinetic state. In the Rayleigh method, a single trial function for the mode shape satisfying at least the
geometric boundary conditions is employed, and then by equating the maximum kinetic and potential
energies, an upper bound frequency solution is obtained accordingly. Ritz [12] extended Rayleigh method by
using a set of admissible trial functions, each of which possesses an independent amplitude coefficient. From
this, a more accurate upper bound solution may be obtained via minimizing the energy functional with respect
to each of these coefficients. The Ritz approach was first successfully demonstrated by Ritz [12] for the
analysis of a free square plate for which no exact solution exists.

In the Ritz method, the accuracy and convergence rate are highly dependent on the trial functions selected.
The frequently used trial functions include the products of eigenfunctions of vibrating beams, 2-D orthogonal
polynomials, and spline functions. Notable works include those of Liew and Lam [13–17], Liew [18–23], Liew
and Wang [24], Liew and Lim [25], Liew and Sum [26], Liew and Yang [27], Liew and Feng [28], Liew et al.
[29–32], Lim and Liew [33], Kitipornchai et al. [34], Cheung and Zhou [35–37]. In this paper, the vibration of
conical panels with two simply supported straight edges is carried out based on the formulation of the 1-D
version of the kp-Ritz method. This is then extended to the 2-D version of the kp-Ritz method for the
vibration analysis of conical panels having arbitrary boundary conditions. Convergence studies based on the
support size and number of nodes are performed to validate the accuracy as well as the stability of the present
technique. Comparisons of the present results are also made with existing results available in open literature.
Finally, the effects of boundary conditions and semi-vertex angle on the frequency characteristics of conical
panels are elucidated.
2. Theoretical formulation—kp-Ritz method

2.1. Energy formulation

We begin with an energy analysis. A thin circular conical shell panel, as shown in Fig. 1, is considered,
where the semi-vertex cone angle is denoted by a, the subtended angle by yo, the length by L, and the thickness
by h. R1 and R2 are the radii at the two ends. A coordinate system ðx; y; zÞ is fixed on the mid-surface of the
panel. The displacements of the shell panel in the x; y and z directions are denoted by u; v, and w, respectively.
The cone radius at any point along its length is given by

RðxÞ ¼ R1 þ x sin a. (1)

The kinetic energy for the circular conical shell panel can be expressed as

T ¼
1

2
rh

Z L

0

Z yo

0

½ _u2 þ _n2 þ _w2�RðxÞdydx, (2)

where the three terms are due to contributions from the linear velocities in the x, y and z directions,
respectively.
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Fig. 1. Geometry of the circular conical shell panel.
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The strain energy of the panel is given by

U e ¼
1

2

Z L

0

Z yo

0

eTSeRðxÞdydx, (3)

where eT and S are the strain vector and stiffness matrix, respectively, and eT is defined as

eT ¼ fe1 e2 g k1 k2 2tg, (4)

where the middle surface strains e1; e2 and g and the middle surface curvatures k1;k2 and t are defined
according to Love’s thin shell theory as follows

e1 ¼
qu

qx
; e2 ¼

1

RðxÞ

qn
qy
þ

u sin a
RðxÞ

þ
w cos a
RðxÞ

; g ¼
qn
qx
þ

1

RðxÞ

qu

qy
�

n sin a
RðxÞ

, (5)

k1 ¼ �
q2w

q2x
; k2 ¼ �

1

R2ðxÞ

q2w

q2y
þ

cos a
R2ðxÞ

qn
qy
�

sin a
RðxÞ

qw

qx
, (6)

t ¼ �
1

RðxÞ

q2w

qxqy
þ

cos a
RðxÞ

qn
qx
þ

sin a
R2ðxÞ

qw

qy
�

n sin a cos a
R2ðxÞ

. (7)

The stiffness matrix S is given by

S ¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
6666666664

3
7777777775
, (8)

where the extensional stiffnesses Aij , and bending stiffnesses Dij are defined as

ðAij ;DijÞ ¼

Z h=2

�h=2
Qijð1; z

2Þdz (9)

and Q denotes the plane stress-reduced stiffness matrix

Q ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75 (10)

with

Q11 ¼
E

1� n̄2
; Q12 ¼

nE

1� n̄2
; Q22 ¼

E

1� n̄2
; Q66 ¼ G, (11)
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where E is the elastic modulus, G the shear modulus, and n̄ the Poisson’s ratio. Thus, the energy functional of
the conical shell panel can be written as

Gt ¼ T �U �. (12)

2.2. 1-D kernel particle (kp) shape functions

For the conical panel having simply supported straight edges, the boundary conditions at these two straight
edges are expressed as

u ¼ w ¼ 0 at y ¼ 0; yo. (13)

For such a conical shell panel, an admissible set of displacement functions are expressed as follows

uðx; yÞ ¼
XNP

I¼1

cI ðxÞuI sin
npy
yo

cosot, (14a)

nðx; yÞ ¼
XNP

I¼1

cI ðxÞnI cos
npy
yo

cosot, (14b)

wðx; yÞ ¼
XNP

I¼1

cI ðxÞwI sin
npy
yo

cosot, (14c)

where NP is the total number of particles, and cI ðxÞ is the axial shape function. uI ; nI and wI are the unknown
nodal values of u; n and w at a given point, and n is the circumferential half wavenumber.

The shape function is given by, see Chen et al. [38] and Liu et al. [39],

cI ðxÞ ¼ Cðx; x� xI Þfaðx� xI Þ, (15)

where Cðx; x� xI Þ is the correction function and faðx� xI Þ is called the kernel function.
The correction function Cðx; x� xI Þ is written as

Cðx; x� xI Þ ¼ HTðx� xI ÞbðxÞ, (16)

where

Hðx� xI Þ ¼ ½1; x� xI ; ðx� xI Þ
2
�T (17)

bðxÞ ¼ ½b0ðxÞ; b1ðxÞ; b2ðxÞ�
T (18)

in which H is a vector of quadratic basis, and biðxÞ are functions of x which are to be determined.
Thus, the shape functions can be assembled as

cI ðxÞ ¼ bTðxÞHðx� xI Þfaðx� xI Þ (19)

and Eq. (19) can be rewritten as

cI ðxÞ ¼ bTðxÞBI ðx� xI Þ (20)

in which

BI ðx� xI Þ ¼ Hðx� xI Þfaðx� xI Þ (21)

bðxÞ ¼ g�1ðxÞHð0Þ, (22)

where the entries of moment matrix g are functions of x, and Hð0Þ is a constant vector.
The expressions of g and Hð0Þ are given by

gðxÞ ¼
XNP

I¼1

Hðx� xI ÞH
Tðx� xI Þfaðx� xI Þ, (23)
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HTð0Þ ¼ ½1; 0; 0�. (24)

Therefore, the shape function can be expressed as

cI ðxÞ ¼ HTð0Þg�1ðxÞHðx� xI Þfaðx� xI Þ. (25)

For thin shell problems, due to the governing differential equations being second order, the first and second
derivatives of the shape functions need to be determined.

The first derivative of the shape function can be obtained by taking the derivative of Eq. (25), i.e.

cI ;xðxÞ ¼ bT;xðxÞBI ðx� xI Þ þ bTðxÞBI ;xðx� xI Þ. (26)

The second derivative of the shape function can be determined by taking derivative of Eq. (26) again, i.e.

cI ;xxðxÞ ¼ bT;xxðxÞBI ðx� xI Þ þ 2bT;xðxÞBI ;xðx� xI Þ þ bTðxÞBI ;xxðx� xI Þ. (27)

The kernel function is expressed as, see Chen et al. [38] and Liu et al. [39],

fa ¼
1

d
f

x� xI

d

� �
, (28)

where the dilation parameter d is the size of the support and fððx� xI Þ=dÞ is the weight function. In this study,
cubic spline functions are chosen as the weights

fðzI Þ ¼

2
3
� 4z2I þ 4z3I for 0pjzI jp 1

2
;

4
3
� 4zI þ 4z2I �

4
3

z3I for 1
2
pjzI jp1;

0 otherwise;

8><
>: (29a)

z1 ¼
ðx� xI Þ

d
. (29b)

At a node, the size of the domain of influence is calculated by

dI ¼ dmaxaI , (30)

where dmax is the scaling factor, which generally ranges from 2.0 to 4.0. The distance aI is determined by
searching for sufficient nodes so as to avoid singularity of the matrix g. For a 1-D problem, each node should
have at least two neighboring nodes in its domain of influence.

2.3. 2-D kernel particle (kp) shape functions

For conical panels with arbitrary boundary conditions, the discrete displacement approximations take the
form

uðx; yÞ ¼
XNP

I¼1

CI ðx; yÞuIe
iot, (31a)

nðx; yÞ ¼
XNP

I¼1

CI ðx; yÞnIe
iot, (31b)

wðx; yÞ ¼
XNP

I¼1

CI ðx; yÞwIe
iot, (31c)

where the 2-D shape function CI ðx; yÞ is constructed in similar fashion to the procedure described above for
the corresponding 1-D case. However, the unknown coefficients and quadratic base vector in Eq. (21) are now
given as

bðxÞ ¼ ½b0ðx; yÞ; b1ðx; yÞ; b2ðx; yÞ; b3ðx; yÞ; b4ðx; yÞ; b5ðx; yÞ�T, (32)
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Hðx� xI Þ ¼ ½1;x� xI ; y� yI ; ðx� xI Þðy� yI Þ; ðx� xI Þ
2; ðy� yI Þ

2
�T. (33)

For this 2-D problem, the weight function is expressed as, see Chen et al. [38]

Cðx; yÞ ¼ fðxÞfðyÞ, (34)

where the weight functions fðxÞ and fðyÞ are of the same forms as in Eq. (29).

2.4. Penalty enforcement of essential boundary conditions

In the present work, we consider different boundary conditions. The penalty method, see Reddy [40,41], is
utilized to implement the essential boundary conditions. The penalty formulation is described as follows:

2.4.1. Simply supported boundary conditions

For the domain bounded by lu, the displacement boundary condition is

u ¼ ū (35)

in which ū is the prescribed displacement on the displacement boundary lu. Eq. (35) is treated as a constraint
condition and it is introduced into the formulation using the penalty method. The variational form of the
penalty functional is given by

Gū ¼
ā
2

Z
lu

ðu� ūÞTðu� ūÞdl, (36)

where ā is the penalty parameter, which is taken to be 103E, with E being the elastic modulus of the shell.

2.4.2. Clamped boundary conditions

For the clamped case, in the domain bounded by lu, besides the boundary condition described by Eq. (35),
the restriction to rotation must also be included

b ¼ b̄, (37)

where

b ¼
dw

dx
(38)

and b̄ is the prescribed rotation on the boundary.
The variational form due to the rotational constraint of Eq. (37) is given by

Gb̄ ¼
ā
2

Z
lu

ðb� b̄ÞTðb� b̄Þdl. (39)

Although in general the penalty parameter for each constraint can be taken differently, here the same
penalty parameter is used for both boundary constraint types.

2.5. Ritz minimization

The variational form due to the boundary conditions can be expressed as

GB ¼ Gū þ Gb̄ (40)

and the total energy functional for the conical panel thus becomes

G ¼ Gt þ GB. (41)

Applying the Ritz minimization procedure to the energy functional

qG
quI

¼
qG
qnI

¼
qG
qwI

¼ 0; I ¼ 1; 2; . . . ;NP (42)
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the matrix equation of the conical shell panel can be obtained as

ð ~K� o2 ~MÞû ¼ 0, (43)

where

~K ¼ K�1KK�T; ~M ¼ K�1MK�T, (44)

K ¼ Ke þ KB1 þ KB2 . (45)

Taking Eq. (14) as the displacement functions in the 1-D kp-Ritz approximation, the system matrices are
given as follows

KIJ ¼ cI ðxJ ÞI; I is an identity matrix, (46)

K
B1

IJ ¼
āyo

2

Z
lu

B1BT

I B1B
J RðxÞdl þ

Z
lu

B1B
I ūRðxÞdl

� �
, (47)

K
B2

IJ ¼
āyo

2

Z
lu

B2BT

I B2B
J RðxÞdl þ

Z
lu

B2B
I b̄RðxÞdl

� �
, (48)

Ke
IJ ¼

yo

2

Z L

0

BeT
I SBe

JRðxÞdx; M ¼
rhyo

2

Z L

0

MT
I MJRðxÞdx, (49)

Be
I ¼

qcI

qx
0 0

sin a
RðxÞ

cI

np
yoRðxÞ

cI

cos a
RðxÞ

cI

�
np

yoRðxÞ
cI

qcI

qx
�

sin a
RðxÞ

cI 0

0 0 �
q2cI

qx2

0
np cos a
yoR2ðxÞ

cI

n2p
yoR2ðxÞ

cI �
sin a
RðxÞ

qcI

qx

0
2 cos a
RðxÞ

qcI

qx
�

2 sin a cos a
R2ðxÞ

cI

2np
yoRðxÞ

qcI

qx
�

2np sin a
yoR2ðxÞ

cI

2
6666666666666666666664

3
7777777777777777777775

, (50)

B1B
I ¼

cI 0 0

0 cI 0

0 0 cI

2
64

3
75; B2B

I ¼

cI ;x 0 0

0 cI ;x 0

0 0 cI ;x

2
64

3
75, (51)

MT
I ¼

cI 0 0

0 cI 0

0 0 cI

2
64

3
75. (52)

Taking Eq. (31) as the displacement functions in the 2-D kp-Ritz approximation, the system matrices are
given as follows:

KIJ ¼ CI ðxJÞI; I is an identity matrix, (53)

Ke
IJ ¼

Z L

0

Z yo

0

BeT
I SBe

JRðxÞdydx, (54)
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K
B1

IJ ¼ ā
Z

lu

B1BT

I B1B
J RðxÞdl þ

Z
lu

B1B
I ūRðxÞdl

� �
, (55)

K
B2

IJ ¼ ā
Z

lu

B2BT

I B2B
J RðxÞdl þ

Z
lu

B2B
I b̄RðxÞdl

� �
, (56)

MIJ ¼ rh

Z L

0

Z yo

0

MT
I MJRðxÞdy dx, (57)

Be
I ¼

qCI

qx
0 0

sin a
RðxÞ

CI

1

RðxÞ

qCI

qy
cos a
RðxÞ

CI

1

RðxÞ

qCI

qy
qCI

qx
�

sin a
RðxÞ

CI 0

0 0 �
q2CI

qx2

0
cos a
R2ðxÞ

qCI

qy
�

1

R2ðxÞ

q2CI

qy2
�

sin a
RðxÞ

qCI

qx

0
2 cos a
RðxÞ

qCI

qx
�

2 cos a sin a
R2ðxÞ

CI �
2

RðxÞ

q2CI

qxqy
þ

2 sin a
R2ðxÞ

qCI

qy

2
6666666666666666666664

3
7777777777777777777775

, (58)

B1B
I ¼

CI 0 0

0 CI 0

0 0 CI

2
64

3
75; B2B

I ¼

CI ;x 0 0

0 CI ;x 0

0 0 CI ;x

2
64

3
75, (59)

M ¼

CI 0 0

0 CI 0

0 0 CI

2
64

3
75. (60)

The above integrations can be carried out using Gauss integration, and the global mass and stiffness
matrices can be obtained by assembling the elemental matrices with overlapping at common nodes, in similar
fashion as finite elements.
3. Numerical results and discussions

3.1. Conical panels with simply supported straight edges

In this section, the frequency results for conical panels with simply supported straight edges are
obtained using the 1-D kp-Ritz method. To evaluate the validity and the accuracy of the present
formulation, convergence and comparison studies are performed. Table 1 shows the comparison of frequency
parameter

f̂ ¼ oR2

ffiffiffiffiffiffiffiffi
rh

A11

s
(61)

for conical panels having SS–SL boundary condition, with results presented by Lam et al. [10]. SS–SL

represents simply supported boundary conditions, where the subscripts ‘‘S’’ and ‘‘L’’ refer to the arcs
at the small and large ends, respectively. The conical shell panel has geometrical parameters
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Table 2

Comparison of frequency parameter f̂ ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=A11

p
for conical panels with CS–CL boundary conditions ðm ¼ 1; n ¼ 2; yo ¼ 60�; n ¼

0:3; h=R1 ¼ 0:02;L=R1 ¼ 25Þ

a Lam et al. [10] Present 1-D kp-Ritz

GDQ Nastran dmax ¼ 2:0 dmax ¼ 2:5 dmax ¼ 3:0

NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80 NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80 NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80

10 0.0850 0.0847 0.0856 0.0851 0.0849 0.0849 0.0852 0.0849 0.0848 0.0848 0.0849 0.0847 0.0847 0.0847

20 0.0937 0.0934 0.0942 0.0938 0.0936 0.0936 0.0939 0.0936 0.0935 0.0935 0.0936 0.0934 0.0934 0.0934

30 0.1104 0.1102 0.1112 0.1106 0.1104 0.1104 0.1107 0.1103 0.1102 0.1102 0.1104 0.1102 0.1102 0.1102

40 0.1240 0.1290 0.1251 0.1244 0.1242 0.1242 0.1246 0.1242 0.1241 0.1241 0.1243 0.1240 0.1240 0.1240

Table 1

Comparison of frequency parameter f̂ ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=A11

p
for conical panels with SS–SL boundary conditions ðm ¼ 1; a ¼ 20�; yo ¼ 60�; n ¼

0:3; h=R1 ¼ 0:015;L=R1 ¼ 20Þ

n Lam et al. [10] Present 1-D kp-Ritz

GDQ Nastran dmax ¼ 2:0 dmax ¼ 2:5 dmax ¼ 3:0

NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80 NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80 NP ¼ 20 NP ¼ 40 NP ¼ 60 NP ¼ 80

2 0.0638 0.0655 0.0656 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655 0.0655

3 0.0909 0.0917 0.0919 0.0918 0.0918 0.0918 0.0918 0.0917 0.0917 0.0917 0.0918 0.0917 0.0917 0.0917

4 0.1299 0.1301 0.1310 0.1306 0.1306 0.1305 0.1309 0.1305 0.1304 0.1304 0.1312 0.1305 0.1305 0.1305

5 0.1801 0.1797 0.1820 0.1810 0.1809 0.1808 0.1820 0.1809 0.1808 0.1808 0.1826 0.1810 0.1808 0.1808

6 0.2419 0.2401 0.2450 0.2429 0.2426 0.2425 0.2452 0.2428 0.2425 0.2424 0.2463 0.2430 0.2425 0.2424

7 0.3147 0.3109 0.3198 0.3162 0.3157 0.3155 0.3200 0.3161 0.3155 0.3154 0.3217 0.3166 0.3157 0.3154

X. Zhao et al. / Journal of Sound and Vibration 295 (2006) 906–922914
a ¼ 20�; yo ¼ 60�; h=R1 ¼ 0:015, and L=R1 ¼ 20. The support size varies from 2.0 to 3.0, and the number of
nodes ranges from 20 to 80. It is observed that the present method possesses good convergence characteristics
for all three support sizes considered. Also, good agreement with Lam et al. [10] is observed from the
comparisons. Next, the influences of the semi-vertex angle a on the convergence rates are investigated. The
convergence characteristics of CS–CL conical panels with various values of a are shown in Table 2. It is found
that a have no significant additional effects on convergence rates. Again, good agreement with Lam et al. [10]
is observed for these two cases.

The variation of the frequency parameter f̂ with the semi-vertex angle a for a conical panel having
SS–SL boundary conditions is given in Fig. 2. For a conical panel with yo ¼ 30�, it is observed that the
frequencies for mode n ¼ 1 increase as a increases, while the frequencies decrease with increasing a,
for modes n ¼ 2 to 5. The same trends are observed for a corresponding conical panel with yo ¼ 60� for
modes n ¼ 1; 3, 4 and 5. However, the frequencies for mode n ¼ 2; show a different trend. Fig. 3 shows the
variation of frequency with a for a conical panel having CS–CL boundary conditions. For such a panel
with yo ¼ 30� modes n ¼ 2, 3, 4 and 5 show the same trends as the preceding simply supported case in
Table 5, while for n ¼ 1, the frequencies initially increase with a, up to a ¼ 50�, and as a is increased further,
the frequencies then decrease. For corresponding conical panels having SS–CL boundary conditions,
see Fig. 4, the variation of frequencies with a; yo and n are very similar as those in Fig. 3 for corresponding
modes of the CS–CL case. The same observations are also made in Figs. 5–7, for corresponding fre-
quency results of conical panels with respective CS–SL, F S–FL (free curved edges) and FS–CL boundary
conditions.
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3.2. Conical panels with arbitrary boundary conditions

In this section, the results are obtained by using the 2-D kp-Ritz method. In order to verify the present
formulation, comparisons with those available in open literature are made. The first comparison concerns the
example given by Cheung et al. [4], who presented results of the dimensionless frequency parameter

~f ¼ oL2

ffiffiffiffiffiffi
rh

D

r
(62)

for a fully clamped conical shell panel using the spline finite stripe method. This case was first analyzed by
Srinivasan and Krishnan [3], and was later also studied by Bardell et al. [8] using the h–p version finite element
method. This shell panel is defined by L=s ¼ 0:6, L=h ¼ 100, L=R1 ¼ 3, a ¼ 30�, yo ¼ 60�, and n ¼ 0:3. The
present converged results are obtained using a support size of 3.5. The comparisons are detailed in Table 3.
It is observed that the fundamental frequency agrees well with the results of both Cheung et al. [4] and
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Bardell et al. [8]. The present solutions for the other three frequencies are little higher, but maximum
differences do not exceed 5%.

Table 4 shows another comparison of present results for the frequency parameter

f̄ ¼ oLbo

ffiffiffiffiffiffi
rh

D

r
(63)

with those reported by Lim and Liew [5] and Bardell et al. [8], for conical panels having CFFF boundary
conditions. The panels are clamped at the larger curved end. The panel parameters are L=R1 ¼ 3, a ¼ 75�,
yo ¼ 30:247�, n ¼ 0:3 and L=s ¼ 0:2 and 0.8. The first eight modes of each case are presented. The present
converged solutions are achieved using 22� 22 nodes and support size of 3.5. It is observed that generally
good agreement is attained with Bardell et al. [8], and with Lim and Liew [5] for the higher modes.

The final comparison concerns conical panels having free edges. Bardell et al. [8] provided two sets of
experimental results, as well as theoretical results, for conical panels with completely free edges. In their
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Table 3

Comparison of frequency parameter ~f ¼ oL2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped conical shell panel ðL=s ¼ 0:6;L=h ¼ 100;L=R1 ¼ 3; a ¼ 30�;

yo ¼ 60�; n ¼ 0:3)

~f 1
~f 2

~f 3
~f 4

Cheung et al. [4] 213.4 262.5 314.7 358.6

Bardell et al. [8] 209.84 257.11 307.9 351.90

Present 2-D kp-Ritz 20� 20 214.21 278.90 329.17 380.69

22� 22 211.48 274.15 324.86 375.73

24� 24 210.72 272.26 324.25 374.13

26� 26 207.53 266.96 318.53 367.95
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Table 6

Comparison of natural frequencies of a completely free conical shell panel, geometrical and material properties based on ‘‘Cone 1’’

Mode Bardell et al. [8] Present 2-D kp-Ritz

Theoretical Experimental 20� 20 22� 22 24� 24

1 7.21 7.5 7.437 7.394 7.33

2 12.32 12.7 13.433 13.181 12.85

3 18.21 18.2 19.331 19.102 18.80

4 34.40 35.6 37.381 36.761 35.96

5 44.32 46.0 47.592 46.980 46.18

6 67.78 59.5 72.565 71.697 70.46

7 75.43 70.4 77.280 76.963 76.52

8 76.05 73.1 77.952 77.393 76.69

9 87.80 90.4 93.882 92.874 91.53

10 113.65 N/A 121.93 120.63 118.78

Table 4

Comparison of frequency parameter f̄ ¼ oLbo

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for conical shell panels with CFFF boundary conditions ðs=h ¼ 1000; a ¼

7:5�; yo ¼ 30:247�; n ¼ 0:3Þ

L=s 1 2 3 4 5 6 7 8

0.2 Lim and Liew [5] 6.1727 9.0708 27.299 29.758 50.665 65.171 74.499 80.201

Bardell et al. [8] 5.5130 8.9563 26.989 28.852 50.174 64.497 75.479 79.578

Present 2-D kp-Ritz 5.8022 9.4253 27.782 29.365 51.676 65.446 75.386 82.783

0.8 Lim and Liew [5] 3.2691 8.3659 16.521 17.117 23.907 29.891 38.614 46.687

Bardell et al. [8] 1.6855 6.3789 15.158 16.412 23.937 28.076 38.344 45.069

Present 2-D kp-Ritz 1.7094 6.4421 15.327 17.398 23.909 28.393 40.651 45.607

Table 5

The geometrical and material properties of the two completely free conical panel types

a ðdegÞ L (m) R1 ðmÞ yo ðdegÞ h (m) E ðGPaÞ r ðkg=m3Þ n̄

Cone 1 3.8 1.14 0.34 130 2.0 70 2700 0.3

Cone 2 26.5 1.12 0.16 180 2.0 70 2700 0.3
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experiments, Bardell et al. [8] prepared two different aluminum conical panels for testing, which were referred
as ‘‘Cone 1’’ and ‘‘Cone 2’’; the geometric and material properties of which are summarized in Table 5. The
frequencies of the first ten modes for each case are given in Tables 6 and 7. The present converged results are
obtained with a support size of 3.5 and 24� 24 nodes. It is observed that very good agreement is attained for
both cases, especially for the lower frequencies. From these comparisons, the accuracy and stability of the
present formulation are validated.

The following parametric study focuses on the effects of the semi-vertex angle a on the frequencies of the
conical panels. Four sets of boundary conditions are considered in the present study, namely, (i) SSSS-simply
supported at four edges, (ii) CFFF-clamped at the larger curved edge, and the other three sides free, (iii)
FFFF-completely free at four sides, and (iv) CCCC-clamped at four edges. The panel parameters are
yo ¼ 60�;R1=h ¼ 100;L=R1 ¼ 20, and n ¼ 0:3: The frequency parameter

~~f of the first eight modes is computed
for each of the four boundary conditions, with a ranging from 15� to 75�. Fig. 8 plots the results for the SSSS
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n ¼ 0:3).

Table 7

Comparison of natural frequencies of a completely free conical shell panel, geometrical and material properties based on ‘‘Cone 2’’

Mode Bardell et al. [8] Present 2-D kp-Ritz

Theoretical Experimental 22� 22 23� 23 24� 24

1 4.65 4.5 4.7 4.69 4.64

2 8.75 8.9 8.83 8.78 8.75

3 11.32 11.5 12.25 12.11 11.99

4 20.85 20.9 22.11 22.01 21.92

5 22.63 21.7 22.72 22.49 22.30

6 33.06 33.2 35.53 35.19 34.92

7 47.83 46.6 48.48 48.28 48.13

8 47.87 47.4 50.11 49.77 49.45

9 63.51 58.6 66.99 66.61 66.30

10 67.95 63.7 69.02 68.80 68.59
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case. It is observed that the frequencies of a given mode generally decrease with increasing a. This trend is also
observed for most of the modes of the CFFF panels, which are presented in Fig. 9. The modes 1, 2 and 4 show
slight differences from the other modes, whereby the frequency increases slightly as a varies from 15� to 30�,
and then decreases as a is increased further. The frequencies of the conical panels with FFFF and CCCC
boundary conditions also show similar trends as those observed for the SSSS case, and these numerical results
are plotted in Figs. 10 and 11, respectively.

In this work, the feasibility of the kp-Ritz method for free vibration analysis to vibration studies of conical
panels was demonstrated. In the conventional Ritz method, the trial functions must satisfy at least the
essential boundary conditions, and it is difficult to find appropriate trial functions for certain boundary
condition types. The present kp-Ritz method overcomes this limitation, whereby a common shape function
based on the mesh-free approach is used to generally describe the interior domain. The boundary conditions
are separately dealt with subsequently through penalty enforcement. The present method thus avoids the eigen
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equations for each boundary case being reformulated, and the computational efforts are therefore reduced.
This makes the kp-Ritz method more robust that the conventional Ritz method.

4. Conclusions

The free vibration analysis of conical shell panels has been carried out by the 1-D and 2-D versions of the
kp-Ritz method. Love’s hypothesis for classical thin-shells was employed in the present analyses. The 1-D kp-
Ritz version was used for conical panels with two simply supported straight edges, where the kernel particle
estimation is employed in hybridized form with harmonic functions to approximate the 2-D displacement
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field. The 2-D kp-Ritz version was used for conical panels having arbitrary boundary conditions, where the
displacement field is approximated by kernel particle functions in 2-D. The accuracy of the present
formulations has been verified via extensive comparisons with existing results. Further, it was found that the
semi-vertex angle a has no significant effects on convergence rates. From the parametric studies, it has been
concluded that boundary conditions and the value of the semi-vertex angle significantly influence the
frequency characteristics of the conical panels.
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